Multiplicity Results of Positive Radial Solutions for -Laplacian Problems in Exterior Domains
نویسندگان
چکیده
منابع مشابه
Multiplicity Results of Positive Radial Solutions for p-Laplacian Problems in Exterior Domains
متن کامل
Existence and Multiplicity of Positive Radial Solutions to Nonlocal Boundary-value Problems in Exterior Domains
In this article, we consider nonlocal p-Laplacian boundary-value problems with integral boundary conditions and a non-negative real-valued boundary condition as a parameter. The main purpose is to study the existence, nonexistence and multiplicity of positive solutions as the boundary parameter varies. Moreover, we prove a sub-super solution theorem, using fixed point index theorems.
متن کاملPOSITIVE SOLUTIONS OF INEQUALITY WITH p-LAPLACIAN IN EXTERIOR DOMAINS
In the paper the differential inequality ∆pu +B(x, u) 6 0, where ∆pu = div(‖∇u‖ ∇u), p > 1, B(x, u) ∈ C( n × , ) is studied. Sufficient conditions on the function B(x, u) are established, which guarantee nonexistence of an eventually positive solution. The generalized Riccati transformation is the main tool.
متن کاملPositive radial solutions for p-Laplacian systems
The paper deals with the existence of positive radial solutions for the p-Laplacian system div(|∇ui| ∇ui) + f (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, x ∈ R . Here f , i = 1, . . . , n, are continuous and nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1|ui|, f i 0 = lim‖u‖→0 f(u) ‖u‖p−1 , f i ∞ = lim‖u‖→∞ f(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2008
ISSN: 1687-2770
DOI: 10.1155/2008/395080